/*
* Copyright (C) 2010 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkState;
import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import java.util.AbstractQueue;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;
/**
* A double-ended priority queue, which provides constant-time access to both
* its least element and its greatest element, as determined by the queue's
* specified comparator. If no comparator is given at construction time, the
* natural order of elements is used.
*
* <p>As a {@link Queue} it functions exactly as a {@link PriorityQueue}: its
* head element -- the implicit target of the methods {@link #peek()}, {@link
* #poll()} and {@link #remove()} -- is defined as the <i>least</i> element in
* the queue according to the queue's comparator. But unlike a regular priority
* queue, the methods {@link #peekLast}, {@link #pollLast} and
* {@link #removeLast} are also provided, to act on the <i>greatest</i> element
* in the queue instead.
*
* <p>A min-max priority queue can be configured with a maximum size. If so,
* each time the size of the queue exceeds that value, the queue automatically
* removes its greatest element according to its comparator (which might be the
* element that was just added). This is different from conventional bounded
* queues, which either block or reject new elements when full.
*
* <p>This implementation is based on the
* <a href="http://portal.acm.org/citation.cfm?id=6621">min-max heap</a>
* developed by Atkinson, et al. Unlike many other double-ended priority queues,
* it stores elements in a single array, as compact as the traditional heap data
* structure used in {@link PriorityQueue}.
*
* <p>This class is not thread-safe, and does not accept null elements.
*
* <p><i>Performance notes:</i>
*
* <ul>
* <li>The retrieval operations {@link #peek}, {@link #peekFirst}, {@link
* #peekLast}, {@link #element}, and {@link #size} are constant-time
* <li>The enqueing and dequeing operations ({@link #offer}, {@link #add}, and
* all the forms of {@link #poll} and {@link #remove()}) run in {@code
* O(log n) time}
* <li>The {@link #remove(Object)} and {@link #contains} operations require
* linear ({@code O(n)}) time
* <li>If you only access one end of the queue, and don't use a maximum size,
* this class is functionally equivalent to {@link PriorityQueue}, but
* significantly slower.
* </ul>
*
* @author Sverre Sundsdal
* @author Torbjorn Gannholm
* @since 8.0
*/
// TODO(kevinb): @GwtCompatible
@Beta
public final class MinMaxPriorityQueue<E> extends AbstractQueue<E> {
/**
* Creates a new min-max priority queue with default settings: natural order,
* no maximum size, no initial contents, and an initial expected size of 11.
*/
public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create() {
return new Builder<Comparable>(Ordering.natural()).create();
}
/**
* Creates a new min-max priority queue using natural order, no maximum size,
* and initially containing the given elements.
*/
public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create(
Iterable<? extends E> initialContents) {
return new Builder<E>(Ordering.<E>natural()).create(initialContents);
}
/**
* Creates and returns a new builder, configured to build {@code
* MinMaxPriorityQueue} instances that use {@code comparator} to determine the
* least and greatest elements.
*/
public static <B> Builder<B> orderedBy(Comparator<B> comparator) {
return new Builder<B>(comparator);
}
/**
* Creates and returns a new builder, configured to build {@code
* MinMaxPriorityQueue} instances sized appropriately to hold {@code
* expectedSize} elements.
*/
public static Builder<Comparable> expectedSize(int expectedSize) {
return new Builder<Comparable>(Ordering.natural())
.expectedSize(expectedSize);
}
/**
* Creates and returns a new builder, configured to build {@code
* MinMaxPriorityQueue} instances that are limited to {@code maximumSize}
* elements. Each time a queue grows beyond this bound, it immediately
* removes its greatest element (according to its comparator), which might be
* the element that was just added.
*/
public static Builder<Comparable> maximumSize(int maximumSize) {
return new Builder<Comparable>(Ordering.natural())
.maximumSize(maximumSize);
}
/**
* The builder class used in creation of min-max priority queues. Instead of
* constructing one directly, use {@link
* MinMaxPriorityQueue#orderedBy(Comparator)}, {@link
* MinMaxPriorityQueue#expectedSize(int)} or {@link
* MinMaxPriorityQueue#maximumSize(int)}.
*
* @param <B> the upper bound on the eventual type that can be produced by
* this builder (for example, a {@code Builder<Number>} can produce a
* {@code Queue<Number>} or {@code Queue<Integer>} but not a {@code
* Queue<Object>}).
* @since 8.0
*/
@Beta
public static final class Builder<B> {
/*
* TODO(kevinb): when the dust settles, see if we still need this or can
* just default to DEFAULT_CAPACITY.
*/
private static final int UNSET_EXPECTED_SIZE = -1;
private final Comparator<B> comparator;
private int expectedSize = UNSET_EXPECTED_SIZE;
private int maximumSize = Integer.MAX_VALUE;
private Builder(Comparator<B> comparator) {
this.comparator = checkNotNull(comparator);
}
/**
* Configures this builder to build min-max priority queues with an initial
* expected size of {@code expectedSize}.
*/
public Builder<B> expectedSize(int expectedSize) {
checkArgument(expectedSize >= 0);
this.expectedSize = expectedSize;
return this;
}
/**
* Configures this builder to build {@code MinMaxPriorityQueue} instances
* that are limited to {@code maximumSize} elements. Each time a queue grows
* beyond this bound, it immediately removes its greatest element (according
* to its comparator), which might be the element that was just added.
*/
public Builder<B> maximumSize(int maximumSize) {
checkArgument(maximumSize > 0);
this.maximumSize = maximumSize;
return this;
}
/**
* Builds a new min-max priority queue using the previously specified
* options, and having no initial contents.
*/
public <T extends B> MinMaxPriorityQueue<T> create() {
return create(Collections.<T>emptySet());
}
/**
* Builds a new min-max priority queue using the previously specified
* options, and having the given initial elements.
*/
public <T extends B> MinMaxPriorityQueue<T> create(
Iterable<? extends T> initialContents) {
MinMaxPriorityQueue<T> queue = new MinMaxPriorityQueue<T>(
this, initialQueueSize(expectedSize, maximumSize, initialContents));
for (T element : initialContents) {
queue.offer(element);
}
return queue;
}
@SuppressWarnings("unchecked") // safe "contravariant cast"
private <T extends B> Ordering<T> ordering() {
return Ordering.from((Comparator<T>) comparator);
}
}
private final Heap minHeap;
private final Heap maxHeap;
@VisibleForTesting final int maximumSize;
private Object[] queue;
private int size;
private int modCount;
private MinMaxPriorityQueue(Builder<? super E> builder, int queueSize) {
Ordering<E> ordering = builder.ordering();
this.minHeap = new Heap(ordering);
this.maxHeap = new Heap(ordering.reverse());
minHeap.otherHeap = maxHeap;
maxHeap.otherHeap = minHeap;
this.maximumSize = builder.maximumSize;
// TODO(kevinb): pad?
this.queue = new Object[queueSize];
}
@Override public int size() {
return size;
}
/**
* Adds the given element to this queue. If this queue has a maximum size,
* after adding {@code element} the queue will automatically evict its
* greatest element (according to its comparator), which may be {@code
* element} itself.
*
* @return {@code true} always
*/
@Override public boolean add(E element) {
offer(element);
return true;
}
@Override public boolean addAll(Collection<? extends E> newElements) {
boolean modified = false;
for (E element : newElements) {
offer(element);
modified = true;
}
return modified;
}
/**
* Adds the given element to this queue. If this queue has a maximum size,
* after adding {@code element} the queue will automatically evict its
* greatest element (according to its comparator), which may be {@code
* element} itself.
*/
@Override public boolean offer(E element) {
checkNotNull(element);
modCount++;
int insertIndex = size++;
growIfNeeded();
// Adds the element to the end of the heap and bubbles it up to the correct
// position.
heapForIndex(insertIndex).bubbleUp(insertIndex, element);
return size <= maximumSize || pollLast() != element;
}
@Override public E poll() {
return isEmpty() ? null : removeAndGet(0);
}
@SuppressWarnings("unchecked") // we must carefully only allow Es to get in
E elementData(int index) {
return (E) queue[index];
}
@Override public E peek() {
return isEmpty() ? null : elementData(0);
}
/**
* Returns the index of the max element.
*/
private int getMaxElementIndex() {
switch (size) {
case 1:
return 0; // The lone element in the queue is the maximum.
case 2:
return 1; // The lone element in the maxHeap is the maximum.
default:
// The max element must sit on the first level of the maxHeap. It is
// actually the *lesser* of the two from the maxHeap's perspective.
return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2;
}
}
/**
* Removes and returns the least element of this queue, or returns {@code
* null} if the queue is empty.
*/
public E pollFirst() {
return poll();
}
/**
* Removes and returns the least element of this queue.
*
* @throws NoSuchElementException if the queue is empty
*/
public E removeFirst() {
return remove();
}
/**
* Retrieves, but does not remove, the least element of this queue, or returns
* {@code null} if the queue is empty.
*/
public E peekFirst() {
return peek();
}
/**
* Removes and returns the greatest element of this queue, or returns {@code
* null} if the queue is empty.
*/
public E pollLast() {
return isEmpty() ? null : removeAndGet(getMaxElementIndex());
}
/**
* Removes and returns the greatest element of this queue.
*
* @throws NoSuchElementException if the queue is empty
*/
public E removeLast() {
if (isEmpty()) {
throw new NoSuchElementException();
}
return removeAndGet(getMaxElementIndex());
}
/**
* Retrieves, but does not remove, the greatest element of this queue, or
* returns {@code null} if the queue is empty.
*/
public E peekLast() {
return isEmpty() ? null : elementData(getMaxElementIndex());
}
/**
* Removes the element at position {@code index}.
*
* <p>Normally this method leaves the elements at up to {@code index - 1},
* inclusive, untouched. Under these circumstances, it returns {@code null}.
*
* <p>Occasionally, in order to maintain the heap invariant, it must swap a
* later element of the list with one before {@code index}. Under these
* circumstances it returns a pair of elements as a {@link MoveDesc}. The
* first one is the element that was previously at the end of the heap and is
* now at some position before {@code index}. The second element is the one
* that was swapped down to replace the element at {@code index}. This fact is
* used by iterator.remove so as to visit elements during a traversal once and
* only once.
*/
@VisibleForTesting MoveDesc<E> removeAt(int index) {
checkPositionIndex(index, size);
modCount++;
size--;
if (size == index) {
queue[size] = null;
return null;
}
E actualLastElement = elementData(size);
int lastElementAt = heapForIndex(size)
.getCorrectLastElement(actualLastElement);
E toTrickle = elementData(size);
queue[size] = null;
MoveDesc<E> changes = fillHole(index, toTrickle);
if (lastElementAt < index) {
// Last element is moved to before index, swapped with trickled element.
if (changes == null) {
// The trickled element is still after index.
return new MoveDesc<E>(actualLastElement, toTrickle);
} else {
// The trickled element is back before index, but the replaced element
// has now been moved after index.
return new MoveDesc<E>(actualLastElement, changes.replaced);
}
}
// Trickled element was after index to begin with, no adjustment needed.
return changes;
}
private MoveDesc<E> fillHole(int index, E toTrickle) {
Heap heap = heapForIndex(index);
// We consider elementData(index) a "hole", and we want to fill it
// with the last element of the heap, toTrickle.
// Since the last element of the heap is from the bottom level, we
// optimistically fill index position with elements from lower levels,
// moving the hole down. In most cases this reduces the number of
// comparisons with toTrickle, but in some cases we will need to bubble it
// all the way up again.
int vacated = heap.fillHoleAt(index);
// Try to see if toTrickle can be bubbled up min levels.
int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle);
if (bubbledTo == vacated) {
// Could not bubble toTrickle up min levels, try moving
// it from min level to max level (or max to min level) and bubble up
// there.
return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle);
} else {
return (bubbledTo < index)
? new MoveDesc<E>(toTrickle, elementData(index))
: null;
}
}
// Returned from removeAt() to iterator.remove()
static class MoveDesc<E> {
final E toTrickle;
final E replaced;
MoveDesc(E toTrickle, E replaced) {
this.toTrickle = toTrickle;
this.replaced = replaced;
}
}
/**
* Removes and returns the value at {@code index}.
*/
private E removeAndGet(int index) {
E value = elementData(index);
removeAt(index);
return value;
}
private Heap heapForIndex(int i) {
return isEvenLevel(i) ? minHeap : maxHeap;
}
private static final int EVEN_POWERS_OF_TWO = 0x55555555;
private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa;
@VisibleForTesting static boolean isEvenLevel(int index) {
int oneBased = index + 1;
checkState(oneBased > 0, "negative index");
return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO);
}
/**
* Returns {@code true} if the MinMax heap structure holds. This is only used
* in testing.
*
* TODO(kevinb): move to the test class?
*/
@VisibleForTesting boolean isIntact() {
for (int i = 1; i < size; i++) {
if (!heapForIndex(i).verifyIndex(i)) {
return false;
}
}
return true;
}
/**
* Each instance of MinMaxPriortyQueue encapsulates two instances of Heap:
* a min-heap and a max-heap. Conceptually, these might each have their own
* array for storage, but for efficiency's sake they are stored interleaved on
* alternate heap levels in the same array (MMPQ.queue).
*/
private class Heap {
final Ordering<E> ordering;
Heap otherHeap;
Heap(Ordering<E> ordering) {
this.ordering = ordering;
}
int compareElements(int a, int b) {
return ordering.compare(elementData(a), elementData(b));
}
/**
* Tries to move {@code toTrickle} from a min to a max level and
* bubble up there. If it moved before {@code removeIndex} this method
* returns a pair as described in {@link #removeAt}.
*/
MoveDesc<E> tryCrossOverAndBubbleUp(
int removeIndex, int vacated, E toTrickle) {
int crossOver = crossOver(vacated, toTrickle);
if (crossOver == vacated) {
return null;
}
// Successfully crossed over from min to max.
// Bubble up max levels.
E parent;
// If toTrickle is moved up to a parent of removeIndex, the parent is
// placed in removeIndex position. We must return that to the iterator so
// that it knows to skip it.
if (crossOver < removeIndex) {
// We crossed over to the parent level in crossOver, so the parent
// has already been moved.
parent = elementData(removeIndex);
} else {
parent = elementData(getParentIndex(removeIndex));
}
// bubble it up the opposite heap
if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle)
< removeIndex) {
return new MoveDesc<E>(toTrickle, parent);
} else {
return null;
}
}
/**
* Bubbles a value from {@code index} up the appropriate heap if required.
*/
void bubbleUp(int index, E x) {
int crossOver = crossOverUp(index, x);
Heap heap;
if (crossOver == index) {
heap = this;
} else {
index = crossOver;
heap = otherHeap;
}
heap.bubbleUpAlternatingLevels(index, x);
}
/**
* Bubbles a value from {@code index} up the levels of this heap, and
* returns the index the element ended up at.
*/
int bubbleUpAlternatingLevels(int index, E x) {
while (index > 2) {
int grandParentIndex = getGrandparentIndex(index);
E e = elementData(grandParentIndex);
if (ordering.compare(e, x) <= 0) {
break;
}
queue[index] = e;
index = grandParentIndex;
}
queue[index] = x;
return index;
}
/**
* Returns the index of minimum value between {@code index} and
* {@code index + len}, or {@code -1} if {@code index} is greater than
* {@code size}.
*/
int findMin(int index, int len) {
if (index >= size) {
return -1;
}
checkState(index > 0);
int limit = Math.min(index, size - len) + len;
int minIndex = index;
for (int i = index + 1; i < limit; i++) {
if (compareElements(i, minIndex) < 0) {
minIndex = i;
}
}
return minIndex;
}
/**
* Returns the minimum child or {@code -1} if no child exists.
*/
int findMinChild(int index) {
return findMin(getLeftChildIndex(index), 2);
}
/**
* Returns the minimum grand child or -1 if no grand child exists.
*/
int findMinGrandChild(int index) {
int leftChildIndex = getLeftChildIndex(index);
if (leftChildIndex < 0) {
return -1;
}
return findMin(getLeftChildIndex(leftChildIndex), 4);
}
/**
* Moves an element one level up from a min level to a max level
* (or vice versa).
* Returns the new position of the element.
*/
int crossOverUp(int index, E x) {
if (index == 0) {
queue[0] = x;
return 0;
}
int parentIndex = getParentIndex(index);
E parentElement = elementData(parentIndex);
if (parentIndex != 0) {
// This is a guard for the case of the childless uncle.
// Since the end of the array is actually the middle of the heap,
// a smaller childless uncle can become a child of x when we
// bubble up alternate levels, violating the invariant.
int grandparentIndex = getParentIndex(parentIndex);
int uncleIndex = getRightChildIndex(grandparentIndex);
if (uncleIndex != parentIndex
&& getLeftChildIndex(uncleIndex) >= size) {
E uncleElement = elementData(uncleIndex);
if (ordering.compare(uncleElement, parentElement) < 0) {
parentIndex = uncleIndex;
parentElement = uncleElement;
}
}
}
if (ordering.compare(parentElement, x) < 0) {
queue[index] = parentElement;
queue[parentIndex] = x;
return parentIndex;
}
queue[index] = x;
return index;
}
/**
* Returns the conceptually correct last element of the heap.
*
* <p>Since the last element of the array is actually in the
* middle of the sorted structure, a childless uncle node could be
* smaller, which would corrupt the invariant if this element
* becomes the new parent of the uncle. In that case, we first
* switch the last element with its uncle, before returning.
*/
int getCorrectLastElement(E actualLastElement) {
int parentIndex = getParentIndex(size);
if (parentIndex != 0) {
int grandparentIndex = getParentIndex(parentIndex);
int uncleIndex = getRightChildIndex(grandparentIndex);
if (uncleIndex != parentIndex
&& getLeftChildIndex(uncleIndex) >= size) {
E uncleElement = elementData(uncleIndex);
if (ordering.compare(uncleElement, actualLastElement) < 0) {
queue[uncleIndex] = actualLastElement;
queue[size] = uncleElement;
return uncleIndex;
}
}
}
return size;
}
/**
* Crosses an element over to the opposite heap by moving it one level down
* (or up if there are no elements below it).
*
* Returns the new position of the element.
*/
int crossOver(int index, E x) {
int minChildIndex = findMinChild(index);
// TODO(kevinb): split the && into two if's and move crossOverUp so it's
// only called when there's no child.
if ((minChildIndex > 0)
&& (ordering.compare(elementData(minChildIndex), x) < 0)) {
queue[index] = elementData(minChildIndex);
queue[minChildIndex] = x;
return minChildIndex;
}
return crossOverUp(index, x);
}
/**
* Fills the hole at {@code index} by moving in the least of its
* grandchildren to this position, then recursively filling the new hole
* created.
*
* @return the position of the new hole (where the lowest grandchild moved
* from, that had no grandchild to replace it)
*/
int fillHoleAt(int index) {
int minGrandchildIndex;
while ((minGrandchildIndex = findMinGrandChild(index)) > 0) {
queue[index] = elementData(minGrandchildIndex);
index = minGrandchildIndex;
}
return index;
}
private boolean verifyIndex(int i) {
if ((getLeftChildIndex(i) < size)
&& (compareElements(i, getLeftChildIndex(i)) > 0)) {
return false;
}
if ((getRightChildIndex(i) < size)
&& (compareElements(i, getRightChildIndex(i)) > 0)) {
return false;
}
if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) {
return false;
}
if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) {
return false;
}
return true;
}
// These would be static if inner classes could have static members.
private int getLeftChildIndex(int i) {
return i * 2 + 1;
}
private int getRightChildIndex(int i) {
return i * 2 + 2;
}
private int getParentIndex(int i) {
return (i - 1) / 2;
}
private int getGrandparentIndex(int i) {
return getParentIndex(getParentIndex(i)); // (i - 3) / 4
}
}
/**
* Iterates the elements of the queue in no particular order.
*
* If the underlying queue is modified during iteration an exception will be
* thrown.
*/
private class QueueIterator implements Iterator<E> {
private int cursor = -1;
private int expectedModCount = modCount;
// TODO(user): Switch to ArrayDeque once Guava supports it.
private Queue<E> forgetMeNot;
private List<E> skipMe;
private E lastFromForgetMeNot;
private boolean canRemove;
@Override public boolean hasNext() {
checkModCount();
return (nextNotInSkipMe(cursor + 1) < size())
|| ((forgetMeNot != null) && !forgetMeNot.isEmpty());
}
@Override public E next() {
checkModCount();
int tempCursor = nextNotInSkipMe(cursor + 1);
if (tempCursor < size()) {
cursor = tempCursor;
canRemove = true;
return elementData(cursor);
} else if (forgetMeNot != null) {
cursor = size();
lastFromForgetMeNot = forgetMeNot.poll();
if (lastFromForgetMeNot != null) {
canRemove = true;
return lastFromForgetMeNot;
}
}
throw new NoSuchElementException(
"iterator moved past last element in queue.");
}
@Override public void remove() {
checkState(canRemove,
"no calls to remove() since the last call to next()");
checkModCount();
canRemove = false;
expectedModCount++;
if (cursor < size()) {
MoveDesc<E> moved = removeAt(cursor);
if (moved != null) {
if (forgetMeNot == null) {
forgetMeNot = new LinkedList<E>();
skipMe = new ArrayList<E>(3);
}
forgetMeNot.add(moved.toTrickle);
skipMe.add(moved.replaced);
}
cursor--;
} else { // we must have set lastFromForgetMeNot in next()
checkState(removeExact(lastFromForgetMeNot));
lastFromForgetMeNot = null;
}
}
// Finds only this exact instance, not others that are equals()
private boolean containsExact(Iterable<E> elements, E target) {
for (E element : elements) {
if (element == target) {
return true;
}
}
return false;
}
// Removes only this exact instance, not others that are equals()
boolean removeExact(Object target) {
for (int i = 0; i < size; i++) {
if (queue[i] == target) {
removeAt(i);
return true;
}
}
return false;
}
void checkModCount() {
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Returns the index of the first element after {@code c} that is not in
* {@code skipMe} and returns {@code size()} if there is no such element.
*/
private int nextNotInSkipMe(int c) {
if (skipMe != null) {
while (c < size() && containsExact(skipMe, elementData(c))) {
c++;
}
}
return c;
}
}
/**
* Returns an iterator over the elements contained in this collection,
* <i>in no particular order</i>.
*
* <p>The iterator is <i>fail-fast</i>: If the MinMaxPriorityQueue is modified
* at any time after the iterator is created, in any way except through the
* iterator's own remove method, the iterator will generally throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* @return an iterator over the elements contained in this collection
*/
@Override public Iterator<E> iterator() {
return new QueueIterator();
}
@Override public void clear() {
for (int i = 0; i < size; i++) {
queue[i] = null;
}
size = 0;
}
@Override public Object[] toArray() {
Object[] copyTo = new Object[size];
System.arraycopy(queue, 0, copyTo, 0, size);
return copyTo;
}
/**
* Returns the comparator used to order the elements in this queue. Obeys the
* general contract of {@link PriorityQueue#comparator}, but returns {@link
* Ordering#natural} instead of {@code null} to indicate natural ordering.
*/
public Comparator<? super E> comparator() {
return minHeap.ordering;
}
@VisibleForTesting int capacity() {
return queue.length;
}
// Size/capacity-related methods
private static final int DEFAULT_CAPACITY = 11;
@VisibleForTesting static int initialQueueSize(int configuredExpectedSize,
int maximumSize, Iterable<?> initialContents) {
// Start with what they said, if they said it, otherwise DEFAULT_CAPACITY
int result = (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE)
? DEFAULT_CAPACITY
: configuredExpectedSize;
// Enlarge to contain initial contents
if (initialContents instanceof Collection) {
int initialSize = ((Collection<?>) initialContents).size();
result = Math.max(result, initialSize);
}
// Now cap it at maxSize + 1
return capAtMaximumSize(result, maximumSize);
}
private void growIfNeeded() {
if (size > queue.length) {
int newCapacity = calculateNewCapacity();
Object[] newQueue = new Object[newCapacity];
System.arraycopy(queue, 0, newQueue, 0, queue.length);
queue = newQueue;
}
}
/** Returns ~2x the old capacity if small; ~1.5x otherwise. */
private int calculateNewCapacity() {
int oldCapacity = queue.length;
int newCapacity = (oldCapacity < 64)
? (oldCapacity + 1) * 2
: (oldCapacity / 2) * 3;
if (newCapacity < 0) {
newCapacity = Integer.MAX_VALUE; // overflow - hotspot will throw OOME
}
return capAtMaximumSize(newCapacity, maximumSize);
}
/** There's no reason for the queueSize to ever be more than maxSize + 1 */
private static int capAtMaximumSize(int queueSize, int maximumSize) {
return Math.min(queueSize - 1, maximumSize) + 1; // don't overflow
}
}
|