/*
* Copyright (C) 2009 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.primitives;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import com.google.common.annotations.VisibleForTesting;
import sun.misc.Unsafe;
import java.lang.reflect.Field;
import java.nio.ByteOrder;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Comparator;
/**
* Static utility methods pertaining to {@code byte} primitives that interpret
* values as <i>unsigned</i> (that is, any negative value {@code b} is treated
* as the positive value {@code 256 + b}). The corresponding methods that treat
* the values as signed are found in {@link SignedBytes}, and the methods for
* which signedness is not an issue are in {@link Bytes}.
*
* @author Kevin Bourrillion
* @author Martin Buchholz
* @author Hiroshi Yamauchi
* @since 1.0
*/
public final class UnsignedBytes {
private UnsignedBytes() {}
/**
* The largest power of two that can be represented as an unsigned {@code byte}.
*
* @since 10.0
*/
public static final byte MAX_POWER_OF_TWO = (byte) (1 << 7);
/**
* Returns the value of the given byte as an integer, when treated as
* unsigned. That is, returns {@code value + 256} if {@code value} is
* negative; {@code value} itself otherwise.
*
* @since 6.0
*/
public static int toInt(byte value) {
return value & 0xFF;
}
/**
* Returns the {@code byte} value that, when treated as unsigned, is equal to
* {@code value}, if possible.
*
* @param value a value between 0 and 255 inclusive
* @return the {@code byte} value that, when treated as unsigned, equals
* {@code value}
* @throws IllegalArgumentException if {@code value} is negative or greater
* than 255
*/
public static byte checkedCast(long value) {
checkArgument(value >> 8 == 0, "out of range: %s", value);
return (byte) value;
}
/**
* Returns the {@code byte} value that, when treated as unsigned, is nearest
* in value to {@code value}.
*
* @param value any {@code long} value
* @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if
* {@code value <= 0}, and {@code value} cast to {@code byte} otherwise
*/
public static byte saturatedCast(long value) {
if (value > 255) {
return (byte) 255; // -1
}
if (value < 0) {
return (byte) 0;
}
return (byte) value;
}
/**
* Compares the two specified {@code byte} values, treating them as unsigned
* values between 0 and 255 inclusive. For example, {@code (byte) -127} is
* considered greater than {@code (byte) 127} because it is seen as having
* the value of positive {@code 129}.
*
* @param a the first {@code byte} to compare
* @param b the second {@code byte} to compare
* @return a negative value if {@code a} is less than {@code b}; a positive
* value if {@code a} is greater than {@code b}; or zero if they are equal
*/
public static int compare(byte a, byte b) {
return toInt(a) - toInt(b);
}
/**
* Returns the least value present in {@code array}.
*
* @param array a <i>nonempty</i> array of {@code byte} values
* @return the value present in {@code array} that is less than or equal to
* every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static byte min(byte... array) {
checkArgument(array.length > 0);
int min = toInt(array[0]);
for (int i = 1; i < array.length; i++) {
int next = toInt(array[i]);
if (next < min) {
min = next;
}
}
return (byte) min;
}
/**
* Returns the greatest value present in {@code array}.
*
* @param array a <i>nonempty</i> array of {@code byte} values
* @return the value present in {@code array} that is greater than or equal
* to every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static byte max(byte... array) {
checkArgument(array.length > 0);
int max = toInt(array[0]);
for (int i = 1; i < array.length; i++) {
int next = toInt(array[i]);
if (next > max) {
max = next;
}
}
return (byte) max;
}
/**
* Returns a string containing the supplied {@code byte} values separated by
* {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2,
* (byte) 255)} returns the string {@code "1:2:255"}.
*
* @param separator the text that should appear between consecutive values in
* the resulting string (but not at the start or end)
* @param array an array of {@code byte} values, possibly empty
*/
public static String join(String separator, byte... array) {
checkNotNull(separator);
if (array.length == 0) {
return "";
}
// For pre-sizing a builder, just get the right order of magnitude
StringBuilder builder = new StringBuilder(array.length * 5);
builder.append(toInt(array[0]));
for (int i = 1; i < array.length; i++) {
builder.append(separator).append(toInt(array[i]));
}
return builder.toString();
}
/**
* Returns a comparator that compares two {@code byte} arrays
* lexicographically. That is, it compares, using {@link
* #compare(byte, byte)}), the first pair of values that follow any common
* prefix, or when one array is a prefix of the other, treats the shorter
* array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] <
* [0x01, 0x80] < [0x02]}. Values are treated as unsigned.
*
* <p>The returned comparator is inconsistent with {@link
* Object#equals(Object)} (since arrays support only identity equality), but
* it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}.
*
* @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">
* Lexicographical order article at Wikipedia</a>
* @since 2.0
*/
public static Comparator<byte[]> lexicographicalComparator() {
return LexicographicalComparatorHolder.BEST_COMPARATOR;
}
@VisibleForTesting
static Comparator<byte[]> lexicographicalComparatorJavaImpl() {
return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
}
/**
* Provides a lexicographical comparator implementation; either a Java
* implementation or a faster implementation based on {@link Unsafe}.
*
* <p>Uses reflection to gracefully fall back to the Java implementation if
* {@code Unsafe} isn't available.
*/
@VisibleForTesting
static class LexicographicalComparatorHolder {
static final String UNSAFE_COMPARATOR_NAME =
LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator();
@VisibleForTesting
enum UnsafeComparator implements Comparator<byte[]> {
INSTANCE;
static final boolean littleEndian =
ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN);
/*
* The following static final fields exist for performance reasons.
*
* In UnsignedBytesBenchmark, accessing the following objects via static
* final fields is the fastest (more than twice as fast as the Java
* implementation, vs ~1.5x with non-final static fields, on x86_32)
* under the Hotspot server compiler. The reason is obviously that the
* non-final fields need to be reloaded inside the loop.
*
* And, no, defining (final or not) local variables out of the loop still
* isn't as good because the null check on the theUnsafe object remains
* inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get
* constant-folded.
*
* The compiler can treat static final fields as compile-time constants
* and can constant-fold them while (final or not) local variables are
* run time values.
*/
static final Unsafe theUnsafe;
/** The offset to the first element in a byte array. */
static final int BYTE_ARRAY_BASE_OFFSET;
static {
theUnsafe = (Unsafe) AccessController.doPrivileged(
new PrivilegedAction<Object>() {
@Override
public Object run() {
try {
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
return f.get(null);
} catch (NoSuchFieldException e) {
// It doesn't matter what we throw;
// it's swallowed in getBestComparator().
throw new Error();
} catch (IllegalAccessException e) {
throw new Error();
}
}
});
BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
// sanity check - this should never fail
if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
throw new AssertionError();
}
}
@Override public int compare(byte[] left, byte[] right) {
int minLength = Math.min(left.length, right.length);
int minWords = minLength / Longs.BYTES;
/*
* Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a
* time is no slower than comparing 4 bytes at a time even on 32-bit.
* On the other hand, it is substantially faster on 64-bit.
*/
for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) {
long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
long diff = lw ^ rw;
if (diff != 0) {
if (!littleEndian) {
return UnsignedLongs.compare(lw, rw);
}
// Use binary search
int n = 0;
int y;
int x = (int) diff;
if (x == 0) {
x = (int) (diff >>> 32);
n = 32;
}
y = x << 16;
if (y == 0) {
n += 16;
} else {
x = y;
}
y = x << 8;
if (y == 0) {
n += 8;
}
return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL));
}
}
// The epilogue to cover the last (minLength % 8) elements.
for (int i = minWords * Longs.BYTES; i < minLength; i++) {
int result = UnsignedBytes.compare(left[i], right[i]);
if (result != 0) {
return result;
}
}
return left.length - right.length;
}
}
enum PureJavaComparator implements Comparator<byte[]> {
INSTANCE;
@Override public int compare(byte[] left, byte[] right) {
int minLength = Math.min(left.length, right.length);
for (int i = 0; i < minLength; i++) {
int result = UnsignedBytes.compare(left[i], right[i]);
if (result != 0) {
return result;
}
}
return left.length - right.length;
}
}
/**
* Returns the Unsafe-using Comparator, or falls back to the pure-Java
* implementation if unable to do so.
*/
static Comparator<byte[]> getBestComparator() {
try {
Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
// yes, UnsafeComparator does implement Comparator<byte[]>
@SuppressWarnings("unchecked")
Comparator<byte[]> comparator =
(Comparator<byte[]>) theClass.getEnumConstants()[0];
return comparator;
} catch (Throwable t) { // ensure we really catch *everything*
return lexicographicalComparatorJavaImpl();
}
}
}
}
|